A discrete scheme of Laplace–Beltrami operator and its convergence over quadrilateral meshes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A discrete scheme of Laplace-Beltrami operator and its convergence over quadrilateral meshes

Laplace–Beltrami operator and its discretization play a central role in the fields of image processing, computer graphics, computer aided geometric design and so on. In this paper, a discrete scheme for Laplace–Beltrami operator over quadrilateral meshes is constructed based on a bilinear interpolation of the quadrilateral. Convergence results for the proposed discrete scheme are established un...

متن کامل

Angle deficit approximation of Gaussian curvature and its convergence over quadrilateral meshes

We propose a discrete approximation of the Gaussian curvature over quadrilateral meshes using a linear combination of two angle deficits. Suppose a surface mesh is obtained from a sampling of a smooth parametric surface F with gij and bij as the coefficients of the first and second fundamental forms, respectively. We show theoretically that for vertices of valence four, the considered two angle...

متن کامل

A Reverse Scheme For Quadrilateral Meshes

Reverse subdivision constructs a coarse mesh of a model from a finer mesh of this same model. In [1] Lanquetin and Neveu propose a reverse mask for the Catmull-Clark scheme which consists in locally reversing Catmull-Clark original formula for even control points, but this mask can not be applied in reversing other variants such as Quad-averaging scheme of Warren and Weimer [2]. In this paper, ...

متن کامل

A Local Support-Operator Diffusion Discretization Scheme for Quadrilateral r-z Meshes

We derive a cell-centered 2-D diffusion differencing scheme for arbitrary quadrilateral meshes in r-z geometry using a local support-operator method. Our method is said to be local because it yields a sparse matrix representation for the diffusion equation, whereas the traditional support-operator method yields a dense matrix representation. The diffusion discretization scheme that we have deve...

متن کامل

Convergence of an adaptive finite element method on quadrilateral meshes

We prove convergence and optimal complexity of an adaptive finite element algorithm on quadrilateral meshes. The local mesh refinement algorithm is based on regular subdivision of marked cells, leading to meshes with hanging nodes. In order to avoid multiple layers of these, a simple rule is defined, which leads to additional refinement. We prove an estimate for the complexity of this refinemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2008

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2007.04.047